3 research outputs found

    Accented Text-to-Speech Synthesis with a Conditional Variational Autoencoder

    Full text link
    Accent plays a significant role in speech communication, influencing understanding capabilities and also conveying a person's identity. This paper introduces a novel and efficient framework for accented Text-to-Speech (TTS) synthesis based on a Conditional Variational Autoencoder. It has the ability to synthesize a selected speaker's speech that is converted to any desired target accent. Our thorough experiments validate the effectiveness of our proposed framework using both objective and subjective evaluations. The results also show remarkable performance in terms of the ability to manipulate accents in the synthesized speech and provide a promising avenue for future accented TTS research.Comment: preprint submitted to a conference, under revie

    Mustango: Toward Controllable Text-to-Music Generation

    Full text link
    With recent advancements in text-to-audio and text-to-music based on latent diffusion models, the quality of generated content has been reaching new heights. The controllability of musical aspects, however, has not been explicitly explored in text-to-music systems yet. In this paper, we present Mustango, a music-domain-knowledge-inspired text-to-music system based on diffusion, that expands the Tango text-to-audio model. Mustango aims to control the generated music, not only with general text captions, but from more rich captions that could include specific instructions related to chords, beats, tempo, and key. As part of Mustango, we propose MuNet, a Music-Domain-Knowledge-Informed UNet sub-module to integrate these music-specific features, which we predict from the text prompt, as well as the general text embedding, into the diffusion denoising process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models in terms of desired chords, beat, key, and tempo, on multiple datasets

    Alzheimer’s Dementia Speech (Audio vs. Text): Multi-Modal Machine Learning at High vs. Low Resolution

    No full text
    Automated techniques to detect Alzheimer’s Dementia through the use of audio recordings of spontaneous speech are now available with varying degrees of reliability. Here, we present a systematic comparison across different modalities, granularities and machine learning models to guide in choosing the most effective tools. Specifically, we present a multi-modal approach (audio and text) for the automatic detection of Alzheimer’s Dementia from recordings of spontaneous speech. Sixteen features, including four feature extraction methods (Energy–Time plots, Keg of Text Analytics, Keg of Text Analytics-Extended and Speech to Silence ratio) not previously applied in this context were tested to determine their relative performance. These features encompass two modalities (audio vs. text) at two resolution scales (frame-level vs. file-level). We compared the accuracy resulting from these features and found that text-based classification outperformed audio-based classification with the best performance attaining 88.7%, surpassing other reports to-date relying on the same dataset. For text-based classification in particular, the best file-level feature performed 9.8% better than the frame-level feature. However, when comparing audio-based classification, the best frame-level feature performed 1.4% better than the best file-level feature. This multi-modal multi-model comparison at high- and low-resolution offers insights into which approach is most efficacious, depending on the sampling context. Such a comparison of the accuracy of Alzheimer’s Dementia classification using both frame-level and file-level granularities on audio and text modalities of different machine learning models on the same dataset has not been previously addressed. We also demonstrate that the subject’s speech captured in short time frames and their dynamics may contain enough inherent information to indicate the presence of dementia. Overall, such a systematic analysis facilitates the identification of Alzheimer’s Dementia quickly and non-invasively, potentially leading to more timely interventions and improved patient outcomes
    corecore